
plotting

March 29, 2024

1 Plotting

2 Table of contents
1. Overview
2. 2D plot
3. Contour plots
4. Titles, axes and legends
5. Export

Producing plots and graphics is a very common task for analysing data and creating reports. Scilab
offers many ways to create and customize various types of plots and charts. In this section, we
present how to create 2D plots and contour plots. Then we customize the title and the legend of
our graphics. We finally export the plots so that we can use it in a report.

2.1 Overview
Scilab can produce many types of 2D and 3D plots. It can create x-y plots with the plot function,
contour plots with the contour function, 3D plots with the surf function, histograms with the
histplot function and many other types of plots. The most commonly used plot functions are:

• plot: 2D plot
• surf : 3D plot
• contour: contour plot
• pie: pie chart
• histplot: histogram
• bar: bar chart
• barh: horizontal bar chart
• hist3d: 3D histogram
• polarplot: plot polar coordinates
• Matplot: 2D plot of a matrix using colors
• Sgrayplot: smooth 2D plot of surface using colors
• grayplot: 2D plot of a surface using colors

In order to get an examaple of 3D plot, we can simplify type the statement surf in th Scilab console

[1]: surf()

1

https://help.scilab.org/plot.html
https://help.scilab.org/surf.html
https://help.scilab.org/contour.html
https://help.scilab.org/pie.html
https://help.scilab.org/histplot.html
https://help.scilab.org/bar.html
https://help.scilab.org/barh.html
https://help.scilab.org/hist3d.html
https://help.scilab.org/polarplot.html
https://help.scilab.org/Matplot.html
https://help.scilab.org/Sgrayplot.html
https://help.scilab.org/grayplot.html

During the creation of a plot, we use several functions in order to create the data or to configure
the plot:

• linspace: linearly spaced vector
• feval: evaluates a function on a grid
• legend: configure the legend of the current plot
• title: configure the title of the current plot
• xtitle: configure the title and the legends of the current plot

2.2 2D plot
In this section, we present how to produce a simple x-y plot. We emphasize the use of vectorized
functions, which produce matrices of data in one function call.

We begin by defining the function which is to be plotted. The myquadratic function squares the
input argument x with the . ̂ operator.

[2]: function f = myquadratic(x)
f = x .^ 2

endfunction
delete(gcf())

We can use the linspace function in order to produce 50 values in the interval [1, 10].

[3]: xdata = linspace(1, 10, 50);
xdata(1:10)

2

https://help.scilab.org/linspace.html
https://help.scilab.org/feval.html
https://help.scilab.org/legend.html
https://help.scilab.org/title.html
https://help.scilab.org/xtitle.html

ans =
1. 1.1836735 1.3673469 1.5510204 1.7346939 1.9183673 2.1020408

2.2857143 2.4693878 2.6530612

The xdata variable now contains a row vector with 50 entries, where the first value is equal to 1
and the last value is equal to 10. We can pass it to the myquadratic function and get the function
value at the given points.

[4]: ydata = myquadratic(xdata);
ydata(1:10)

ans =
1. 1.4010829 1.8696377 2.4056643 3.0091628 3.6801333 4.4185756

5.2244898 6.0978759 7.0387339

This produces the row vector ydata, which contains 50 entries. We finally use the plot function
so that the data is displayed as an x-y plot.

[5]: plot(xdata, ydata)

Notice that we could have produced the same plot without generating the intermediate array ydata.
Indeed, the second input argument of the plot function can be a function, as in the following session.

[6]: plot(xdata, myquadratic)

3

When the number of points to manage is large, using functions directly saves significant amount of
memory space, since it avoids generating the intermediate vector ydata.

2.3 Contour plots
In this section, we present the contour plots of a multivariate function and make use of the contour
function. This type of graphic is often used in the context of numerical optimization because it
draws functions of two variables in a way that shows the location of the optimum.

The Scilab function contour plots contours of a function f. The contour function has the following
syntax contour(x, y, z, nz) where - x (resp. y) is a row vector of x (resp. y) values with size
n1 (resp n2) - z is a real matrix of size (n1,n2), containing the values of the function or a Scilab
function which defines the surface z = f(x, y), - nz the level values or the number of levels.

In the following Scilab session, we use a simple form of the contour function, where the function
myquadratic is passed as an input argument. The myquadratic function takes two input argu-
ments 𝑥1 and 𝑥2 and returns 𝑓(𝑥1, 𝑥2) = 𝑥2

1 + 𝑥2
2.

The linspace function is used to generate vectors of data so that the function is analyzed in the
range [−1, 1]2.

[7]: function f = myquadratic2arg (x1 , x2)
f = x1**2 + x2**2;

endfunction
xdata = linspace (-1 , 1 , 100);
ydata = linspace (-1 , 1 , 100);
contour (xdata , ydata , myquadratic2arg , 10)

4

In practice, it may happen that our function has the header z = myfunction (x), where the input
variable x is a row vector. The problem is that there is only one single input argument, instead
of the two arguments required by the contour function. There are two possibilities to solve this
little problem: - provide the data to the contour function by making two nested loops, - provide
the data to the contour function by using feval, - define a new function which calls the first one.

These three solutions are presented in this section. The first goal is to let the reader choose the
method which best fits the situation. The second goal is to show that performances issues can be
avoided if a consistent use of the functions provided by Scilab is done.

In the following Scilab naive session, we define the function myquadratic1arg, which takes one
vector as its single input argument. Then we perform two nested loops to compute the zdata
matrix, which contains the z values. The z values are computed for all the combinations of points
(𝑥(𝑖), 𝑦(𝑗)) ∈ ℝ2, for 𝑖 = 1, 2, … , 𝑛𝑥 and 𝑗 = 1, 2, … , 𝑛𝑦, where 𝑛𝑥 and 𝑛𝑦 are the number of points
in the 𝑥 and 𝑦 coordinates. In the end, we call the contour function, with the list of required levels
(instead of the previous number of levels). This gets exactly the levels we want, instead of letting
Scilab compute the levels automatically.

[8]: function f = myquadratic1arg (x)
f = x(1)**2 + x(2)**2;

endfunction
xdata = linspace (-1 , 1 , 100);
ydata = linspace (-1 , 1 , 100);
// Caution ! Two nested loops, this is bad.
for i = 1:length(xdata)

for j = 1:length(ydata)

5

x = [xdata(i) ydata(j)].';
zdata (i , j) = myquadratic1arg (x);

end
end
contour (xdata , ydata , zdata , [0.1 0.3 0.5 0.7])

The previous script works perfectly. Still, it is not efficient because it uses two nested loops and
this should be avoided in Scilab for performance reasons. Another issue is that we had to store the
zdata matrix, which might consume a lot of memory space when the number of points is large.
This method should be avoided since it is a bad use of the features provided by Scilab.

In the following script, we use the feval function, which evaluates a function on a grid of val-
ues and returns the computed data. The generated grid is made of all the combinations of
points (𝑥(𝑖), 𝑦(𝑗)) ∈ ℝ2. We assume here that there is no possibility to modify the function
myquadratic1arg, which takes one input argument. Therefore, we create an intermediate func-
tion myquadratic3, which takes 2 input arguments. Once done, we pass the myquadratic3
argument to the feval function and generate the zdata matrix.

[9]: function f = myquadratic1arg (x)
f = x(1)**2 + x(2)**2;

endfunction
function f = myquadratic3 (x1 , x2)

f = myquadratic1arg ([x1 x2])
endfunction
xdata = linspace (-1 , 1 , 100);
ydata = linspace (-1 , 1 , 100);

6

zdata = feval (xdata , ydata , myquadratic3);
contour (xdata , ydata , zdata , [0.1 0.3 0.5 0.7])

The previous script produces, of course, exactly the same plot as previously. This method should
be avoided when possible, since it requires storing the zdata matrix, which has size 100 × 100.
Finally, there is a third way of creating the plot. In the following Scilab session, we use the
same intermediate function myquadratic3 as previously, but we pass it directly to the contour
function.

[10]: function f = myquadratic1arg (x)
f = x(1)**2 + x(2)**2;

endfunction
function f = myquadratic3 (x1 , x2)

f = myquadratic1arg ([x1 x2])
endfunction
xdata = linspace (-1 , 1 , 100);
ydata = linspace (-1 , 1 , 100);
contour (xdata , ydata , myquadratic3 , [0.1 0.3 0.5 0.7])

7

The previous script produces, of course, exactly the same plot as previously. The major advantage
is that we did not produce the zdata matrix.

We have briefly outlined how to produce simple 2D plots. We are now interested in the configuration
of the plot, so that the titles, axis and legends corresponds to our data.

2.4 Titles, axes and legends
In this section, we present the Scilab graphics features which configure the title, axes and legends
of an x-y plot.

[11]: function f = myquadratic (x)
f = x.^2

endfunction
xdata = linspace (1 , 10 , 50);
ydata = myquadratic (xdata);
plot (xdata , ydata)

8

Scilab graphics system is based on graphics handles. The graphics handles provide an object-
oriented access to the fields of a graphics entity. The graphics layout is decomposed into sub-objects
such as the line associated with the curve, the x and y axes, the title, the legends, and so forth.
Each object can be in turn decomposed into other objects if required. Each graphics object is
associated with a collection of properties, such as the width or color of the line of the curve. These
properties can be queried and configured simply by getting or setting their values, like any other
Scilab variables. Managing handles is easy and very efficient.

But most basic plot configurations can be done by simple function calls and, in this section, we will
focus in these basic features.

In the following script, we use the title function in order to configure the title of our plot.

[12]: function f = myquadratic (x)
f = x.^2

endfunction
xdata = linspace (1 , 10 , 50);
ydata = myquadratic (xdata);
plot (xdata , ydata)
title ("My title");

9

We may want to configure the axes of our plot as well. For this purpose, we use the xtitle function
in the following script.

[13]: function f = myquadratic (x)
f = x.^2

endfunction
xdata = linspace (1 , 10 , 50);
ydata = myquadratic (xdata);
plot (xdata , ydata)
xtitle ("My title" , "X axis" , "Y axis");

10

It may happen that we want to compare two sets of data in the same 2D plot, that is, one set of x
data and two sets of y data.
In the following script, we define the two functions 𝑓(𝑥) = 𝑥2 and 𝑓(𝑥) = 2𝑥2 and plot the data on
the same x-y plot. We additionally use the “+-” and “o-” options of the plot function, so that
we can distinguish the two curves 𝑓(𝑥) = 𝑥2 and 𝑓(𝑥) = 2𝑥2.

[14]: function f = myquadratic (x)
f = x.^2

endfunction
function f = myquadratic2 (x)

f = 2 * x.^2
endfunction
xdata = linspace (1 , 10 , 50);
ydata = myquadratic (xdata);
plot (xdata , ydata , "+-")
ydata2 = myquadratic2 (xdata);
plot (xdata , ydata2 , "o-")
xtitle ("My title" , "X axis" , "Y axis");

11

Moreover, we must configure a legend so that we can know what curve is associated with 𝑓(𝑥) = 𝑥2

and what curve is associated with 𝑓(𝑥) = 2𝑥2. For this purpose, we use the legend function in
order to print the legend associated with each curve.

[15]: function f = myquadratic (x)
f = x.^2

endfunction
function f = myquadratic2 (x)

f = 2 * x.^2
endfunction
xdata = linspace (1 , 10 , 50);
ydata = myquadratic (xdata);
plot (xdata , ydata , "+-")
ydata2 = myquadratic2 (xdata);
plot (xdata , ydata2 , "o-")
legend ("x^2" , "2x^2");

12

We now know how to create a graphics plot and how to configure it. If the plot is sufficiently
interesting, it may be worth putting it into a report. To do so, we can export the plot into a file,
which is the subject of the next section.

2.5 Export
In this section, we present ways of exporting plots into files, either interactively or automatically
with Scilab functions.

Scilab can export any graphics into the vectorial and bitmap formats presented below. Once a plot
is produced, we can export its content into a file, by interactively using the File > Export to…
menu of the graphics window. We can then set the name of the file and its type.

Vectorial format functions are:

• xs2png: export into PNG
• xs2pdf : export into PDF
• xs2svg: export into SVG
• xs2eps: export into Encapsulated Postscript
• xs2ps: export into Postscript
• xs2emf : export into EMF (only for Windows)

Bitmap format functions are:

• xs2fig: export into FIG
• xs2gif : export into GIF
• xs2jpg: export into JPG
• xs2bmp: export into BMP

13

https://help.scilab.org/xs2png.html
https://help.scilab.org/xs2pdf.html
https://help.scilab.org/xs2svg.html
https://help.scilab.org/xs2eps.html
https://help.scilab.org/xs2ps.html
https://help.scilab.org/xs2emf.html
https://help.scilab.org/xs2fig.html
https://help.scilab.org/xs2gif.html
https://help.scilab.org/xs2svg.html
https://help.scilab.org/xs2bmp.html

• xs2ppm: export into PPM

We can alternatively use the xs2* functions. All these functions are based on the same calling
sequence:

xs2png (window_number , filename)

where:

• window_number is the number of the graphics window
• and filename is the name of the file to export.

For example, the following session exports the plot which is in the graphics window number 0,
which is the default graphics window,
into the file foo.png.

[16]: function f = myquadratic (x)
f = x.^2

endfunction
xdata = linspace (1 , 10 , 50);
ydata = myquadratic (xdata);
plot (xdata , ydata)
xs2png (0 , "foo.png")

If we want to produce higher quality documents, the vectorial formats are preferred. For example,
LaTeX documents may use Scilab plots exported into PDF files to improve their readability,
whatever the size of the document.

14

https://help.scilab.org/xs2ppm.html

	Plotting
	Table of contents
	Overview
	2D plot
	Contour plots
	Titles, axes and legends
	Export

